

SSLNet Smart Sustainable Lighting Conference

August 19, 2014, University of Toronto, Mississauga Campus

Integration of Adaptive Lighting & Daylighting

Konstantinos Papamichael, Ph.D. Professor, Department of Design Co-Director, California Lighting Technology Center University of California, Davis

RESEARCH INNOVATION PARTNERSHIP

633 Pena Drive, Davis, CA, 95618 | cltc.ucdavis.edu | PH: 530-747-3838, FAX:530-747-3812

The Fundamental Lighting Design Strategy

Provide

Right Light -> Spectral Power Distribution

Where -> Candle Power Distribution

& When -> Environmental Conditions

Needed

Offers the Most Energy Efficient Lighting

Automatically adjust their light output...

...based on environmental conditions...

...to optimize space & building performance

- Automatically adjust their light output...
 - Candle Power Distribution (SPD) total flux & spatial distribution
 - Spectral Power Distribution (SPD) CCT & CRI
 - **—** ...
- ...based on environmental conditions...

...to optimize space & building performance

- Automatically adjust their light output...
 - Candle Power Distribution (SPD) total flux & spatial distribution
 - Spectral Power Distribution (SPD) CCT & CRI
 - ...
- ...based on environmental conditions...
 - Occupancy / Vacancy
 - Daylight Availability
 - Demand Response Signals
 - **—** ...
- ...to optimize space & building performance

- Automatically adjust their light output...
 - Candle Power Distribution (SPD) total flux & spatial distribution
 - Spectral Power Distribution (SPD) CCT & CRI
 - **—** ...
- ...based on environmental conditions...
 - Occupancy / Vacancy
 - Daylight Availability
 - Demand Response Signals
 - ...
- ...to optimize space & building performance
 - Maximize Comfort
 - Minimize Energy Requirements
 - Minimize Peak Electricity Demand
 - **—** ...

Simple Adaptive Lighting Control Strategy

During Occupancy Focus on Comfort

During Vacancy Focus on Energy Efficiency

Adaptive Outdoor Lighting – Circa 2005

- **Amber LED (2W) & CFL Light Sources**
- Photo sensor: both light sources off during daytime
- Occupancy sensor: LED during vacancy and CFL during occupancy 8

Dual Source Bi-level Luminaire

Dual Source Bi-level Luminaire

Spectrally Tunable Lighting

- Research & Development
 - Technology
 - Human Factor
- Multiple Applications
 - Office spaces
 - Assisted living
 - Hospitals
 - Hotels

Key Electric Lighting Control Strategies

Automated Controls

Key Challenge

- **High-end Tuning**
- **Occupancy/Vacancy!**
- **Daylight Harvesting!**
- **Scheduling**
- **Demand Response!**
- **Manual Control(!)**

What Is **Happening**

Easy

What To Do

Occupancy-based bi-level parking lighting

one of our largest outdoor opportunities for energy savings

60% average savings

Occupancy-based Bi-level Parking Lighting

Bi-Level LED Bollards

Arcade Creek park California Department of Public Health

Bollards operate in low mode 85% of the time

Occupancy-based Bi-level Pathway Lighting

Pathway luminaires, April 24, 2012

60% energy savings compared to continuous full output

UC Davis Campus Today

~1,600 Networked Occupancy-Based Bi-Level Outdoor Luminaires

Adaptive Street Lighting - 2nd Street, Davis, CA

- Predictive controls RD&D
- Microwave sensors can sense speed of motion
- Can differentiate among automobiles, bicycles and pedestrians
- Full power from one to three light posts ahead of motion detection

Stairwell Occupancy-Based Bi-Level Controls

Watts UCLA - Total Stairwell Energy Usage (Typical Day)

UC Davis Case Study

Bainer Hall

- 18% average occupancy
- 73% average energy savings

Corridor Occupancy-Based Bi-level Control Bainer Hall, UC Davis

Weekday

Weekend

UC Santa Barbara Corridors Study

- Occupancy rates for 50 corridors across 11 buildings on UCSB campus
- Occupancy ranged from 2.6% to 25.9%
- Average occupancy of 10.2% across all buildings
- 12.3% corridor occupancy in first floors, 8.9% elsewhere

Daylight Harvesting Strategy

- Reduce electric lighting based on available daylight
- Among most promising energy efficiency strategies
 - Significant energy savings
 - Lighting
 - Cooling
 - Significant peak demand reduction
 - Daylight availability coincides with peak demand

Barriers to Wide-Spread Applications

Reliability

- Over dimming of electric lighting
 - Occupant complaints, lost employee productivity
- Under dimming of electric lighting
 - Lost energy savings

Cost Effectiveness

- Component costs low
- Commissioning costs high
- Re-commissioning costs higher
- Lost employee productivity costs highest
 - 1 hr employ cost = 1 yr electric lighting savings
- Energy
 - Ineffective controls → significant penalties

New, Market Driven Technologies

... we need a simplified, inexpensive daylight harvesting control system that turns off half of the lights in areas with plenty of daylight, such as next to windows and under skylights ...

Not enough daylight: 100% lighting

"Enough" daylight: 50% lighting

Even more daylight: 0% lighting

No occupants: 0% lighting

Bi-Level Switching

December 3rd, Clear Day, OFF @ 2.5*EL, ON @ 1.5*EL

Time of Day

Bi-Level Switching

December, 4th Partly Cloudy Day, OFF @ 2.5*EL, ON @ 1.5*EL

Time of Day

Commercialization

- On/Off Switching based on available daylight
- Automatic, continuous calibration
- Adjustable set points
- Adjustable time delay

From the Lab...

... To the Marketplace

New, Market Driven Technologies

... we need a simplified, inexpensive daylight harvesting control system that turns off half of the lights in areas with plenty of daylight, such as next to windows and under skylights ...

... we need a daylight harvesting system that reliably dims electric lights based on available daylight indoors ...

Traditional Daylight Sensing Strategies

Closed Loop Sensing Affected by electric lighting

Closed Loop Sensing Not affected by electric lighting

Advantages

Measures light in the space

Disadvantages

- Requires re-calibration for long-term changes (geometry and reflectance of interior surfaces)
- Cannot differentiate between:
 - Daylight changes (fluctuations in daylight levels)
 - Short-term space changes (moving occupants/ objects)

Advantages

Not affected by changes in the space

Disadvantages

- · Requires commissioning
- Not an accurate indicator of daylight levels in the space

Dual Loop Daylight Sensing

- Measures light in and out of the space
- Automatic closed-loop calibration
 - Based on electric light levels
 - No need for commissioning
- Continuous closed-loop recalibration
 - Closed loop sensor automatically adjusts to interior changes
 - No need for re-commissioning
- Dual sensor logic
 - Differentiates daylight changes from changes to interior reflectance values
 - Offers reliable operation

Field Testing West Sacramento Wal-Mart Store

Effect of Interior Changes on Sensor Signal

Night-time Daily Automatic Calibration

Electric Light Value on Photosensor at Night

Field Test: Energy Savings

24/7 Operation

Commercialization

- **Dual-Loop photo sensing**
- Automatic, continuous calibration of closed loop
- **Integrated in the Watt Stopper DLM** control system

... To the Marketplace

Dual Loop for Window Applications

- It works!
- but requires commissioning for proper placement and field of view of "open loop" (reference) sensor

Redundant Sensing Strategy

You can fool one sensor at a time.

Fooling multiple sensors at the same time in the same way requires special choreography...

Ultra Smart Luminaires

- One or more light sources
- Multiple integrated sensors
 - Occupancy sensing
 - Photo sensing
 - Temperature sensing
 - ...

Communications

- With other luminaires
- With utilities
- **–** ...

- Control logic based on multiple sensor signals
 - From same luminaire
 - From neighboring luminaires

CLTC Daylight Harvesting Laboratory

- Daylight simulator new facility with industry support
- Optimize daylight harvesting for comfort and energy efficiency

Ultra-smart Luminaires R&D

Daylight Harvesting Optimization Strategy

- Reduce electric lighting based on available daylight
- After electric lighting is off or at minimum output
- Adjust fenestration transmittance based on
 - HVAC status
 - Potential for glare

Adaptive Daylighting Systems

- Automatically adjust their light output...
 - Candle Power Distribution (SPD) total flux & spatial distribution
 - Spectral Power Distribution (SPD) color spectrum CCT, CRI
- ...based on environmental conditions...
 - Occupancy / Vacancy
 - Electric Lighting Status
 - Demand Response Signals
 - HVAC Status

– ...

- ...to optimize space & building performance
 - Maximize Comfort
 - Minimize Energy Requirements
 - Minimize Peak Electricity Demand

– ...

Ball State University Muncie, Indiana

http://sageglass.com/portfolio/siemens/

Chabot College Hayward, California

Chabot College Hayward, California

Daylight Harvesting Optimization Simulation Windows with Electrochromic Glazing DOE - Standard Small Office

BCVTB Controls Simulation Modeling

Released in 2011, **B**uilding **C**ontrol **V**irtual **T**est **B**ed supports different simulation programs simultaneously, calculating parameters at every time step with custom algorithms

DOE Standard, Validated Small Office Model

The			A 173
-	300	0.73.737	
	ши	enix,	

#	Lighting Controls?	Fenestration Controls?	Lighting [GJ]		Cooling [GJ]		Heating [GJ]		Total [GJ]	
1	no	no	56.69		59.82		9.04		125.55	
2	yes	no	36.84	-35%	55.79	-7%	10.39	15%	103.02	-18%
3	yes	yes	33.34	-41%	49.98	-16%	11.88	31%	95.20	-24%
4	yes	yes, only summer	33.34	-41%	51.08	-15%	9.27	3%	93.69	-25%
5	yes	yes, 4 states (BCVTB)	33.34	-41%	52.89	-12%	10.72	19%	96.95	-23%

Baltimore, MD

#	Lighting Controls?	Fenestration Controls?	Lighting [GJ]		Cooling [GJ]		Heating [GJ]		Total [GJ]	
1	no	no	56.69		19.79		44.40		120.88	
2	yes	no	35.29	-38%	17.40	-12%	50.90	15%	103.59	-14%
3	yes	yes	33.85	-40%	14.74	-26%	58.16	31%	106.75	-12%
4	yes	yes, only summer	33.85	-40%	15.25	-23%	46.59	5%	95.69	-21%
5	yes	yes, 4 states (BCVTB)	34.32	-39%	15.45	-22%	53.23	20%	103.00	-15%

Minneapolis, MN

#	Lighting Controls?	Fenestration Controls?	Lighting [GJ]		Cooling [GJ]		Heating [GJ]		Total [GJ]	
1	no	no	56.69		12.28		97.07		166.04	
2	yes	no	35.59	-37%	11.03	-10%	106.59	10%	153.21	-8%
3	yes	yes	34.04	-40%	8.71	-29%	117.82	21%	160.57	-3%
4	yes	yes, only summer	34.04	-40%	9.65	-21%	100.14	3%	143.83	-13%
5	yes	yes, 4 states (BCVTB)	37.32	-34%	9.54	-22%	102.02	5%	148.88	-10%

Smart Windows & Skylights

- Multi-sensor-based automated controls
 - Occupancy, light, air temperature, wind, etc., in/out
- Multiple performance aspects
 - Luminous, thermal, ventilation, view, safety, etc.

Current Laboratory Prototype Work

- Development of control algorithms
 - LabView
- Three dynamic components
 - Electrochromic glazing
 - Retractable perforated shades
 - Retractable films
- Five sensors
 - Indoor occupancy
 - Indoor & outdoor light
 - Indoor & outdoor temperature

Ultra Smart Luminaires, Windows & Skylights

- Integrated sensors (occupancy, light, temperature, ...)
- Integrated communications (DR & sensor-based controls)
- Ultra Smart Luminaires
 - Automatic adjustment of electric light CPD & SPD
 - Based on Occupancy, Daylight, DR & Manual(!) signals
- Ultra Smart Windows & Skylights
 - Automatic Adjustment of Daylight CPD SPD & Ventilation
 - Based on Occupancy, Electric Lighting, HVAC & Manual(!) signals

Integrated Control Strategy

- During Occupancy Focus on Comfort
 - Adjust fenestration for maximum daylight penetration
 - Adjust electric lighting for daylight contribution
 - Adjust HVAC
- During Vacancy Focus on Energy Efficiency
 - Adjust fenestration for cooling/heating loads
 - Turn electric lighting off or dim down
 - Adjust HVAC

Thank You!

kpapamichael@ucdavis.edu

Konstantinos Papamichael, Ph.D.
Professor, Department of Design
Co-Director, California Lighting Technology Center
University of California, Davis

RESEARCH INNOVATION PARTNERSHIP

633 Pena Drive, Davis, CA, 95618 | cltc.ucdavis.edu | PH: 530-747-3838, FAX:530-747-3812

