Algorithms for Advanced Lighting Control & Energy Management

Algorithms for Advanced Lighting Control & Energy Management

With support from a CITRIS seed grant, researchers at CLTC and UC Berkeley are working together to develop advanced lighting control algorithms that make use of multiple data streams, both local and remote, to improve lighting and energy management in buildings. Applications include electrical lighting systems in commercial spaces with windows and/or skylights.

Adaptive Corridors

Adaptive Corridors, Bainer Hall, UC Davis

CLTC research, demonstrations and case studies have shown adaptive corridor and stairwell lighting systems are a cost-effective strategy for achieving lighting energy savings of 40–50%. This is because many stairwells and corridors are illuminated continuously, despite low occupancy rates, and are usually equipped with standard, non-dimmable ballasts and operated with wall switches or from a panel box.

Core Sunlighting Systems

Solar Canopy for Core Daylighting

Core sunlighting systems deliver sunlight deep into multi-story building cores, where daylight is not available through skylights or windows. An effective core sunlighting system offers physiological and psychological benefits to occupants while dramatically improving the quality and color rendering of lighting, reducing lighting electricity use up to 75%, and reducing electricity loads during peak demand periods.

Daylight Optimization for Skylights

Daylight Optimization for Skylights

CLTC is evaluating dynamic skylight systems that automatically adjust light transmission to minimize glare and manage solar heat gain, significantly improving both lighting quality and energy savings. Engineers are using one of the Center's integrating spheres to measure the transmittance of different sample units.

Applications include residential and commercial spaces that receive sufficient sunlight to require some form of shading for occupant comfort or to prevent solar heat gain.

Dual-Loop Photosensor Control System for Daylight Harvesting

Dual-Loop Photosensor Control System for Daylight Harvesting

Photosensor control systems have been available for more than two decades, but they have struggled to gain widespread use due to issues with reliability. To address these issues, CLTC partnered with WattStopper, Walmart, Sacramento Municipal Utility District, Southern California Edison, and San Diego Gas & Electric Company to develop a more reliable, more effective daylighting control system capable of sensing changes in daylight levels with increased accuracy and responding with more appropriate adjustments in electric light levels.


Recent News

Today, adaptive lighting is considered best practice for numerous outdoor applications and has been incorporated into
In the fall of 2017, the Mexican Ministry of Energy awarded funding to the Universidad Autónoma de Guadalajara in col
Outcome-based energy codes are relatively new.