

Improving Traceability of Fluorescence Calibrations to Practical Colorimetric Applications

Joanne Zwinkels, William Neil and Mario Noël Measurement Science and Standards National Research Council of Canada

Traceability

Property of the result of a measurement whereby it can be related to stated references, usually national or international standards, by an *unbroken chain of comparisons* all having *stated uncertainties* [VIM 6.10]

Traceable calibrations must have stated uncertainties and a "traceability chain"

NRC-CNRC

Fluorescence Instrumentation

Conventional Spectrophotometer

CIE Reflectance Geometries

Reference Documents

Measurement of Fluorescent Colour: CIE Standards

Calibration Methods and Photoluminescent Standards for Total Radiance Factor Measurements

Highest Accuracy:

- Two-monochromator method
- 45:0 or 0:45 geometry is preferable

NRC Reference Spectrofluorimeter

- Based on two-monochromator method
- Measurement geometry: 45°a/0°

J. Zwinkels et al., Applied Optics, 36, 892-902 (1997)

Traceability of Fluorescence

Linking Fluorescence Measurements to SI Radiometric Scales – Physical Transfer Standards (PTS)

All PTS: SI: Calibrated **Cryogenic Radiometer CCPR Key** for 45:0 Comparisons Spectral responsivity [A/W] Geometry Instrument **Physical Transfer Standards Calibration** Detector, Source and **Reflector Standards Fluorescent** samples : **Fluorescent** Reference **Traceability** Spectrofluorimeter sample to 45:0 calibration: **Spectral characteristics** geometry Color quantities, Photometric scale quantum yields

NRC.CNRC

Practical Fluorescence Colorimetry One monochromator Poly mode

Sphere geometry d:0 (paper applications) de:8 or di:8 (textile applications) Instrument calibration with calibrated transfer standards:

Photometric scale: non-fluorescent Colorimetrric scale: fluorescent

1 point - UV adjustment → One colorimetric quantity e.g. D65 whiteness

Traceability requirements:

Standard is similar to test sample -

- Same excitation/emission
- Same measurement geometry

Effect of Measurement Geometry

Bispectral (45:0 or 0:45)

- CIE Reference geometry for fluorescence measurements
- Gives spectral radiance factor
- Source SPD does not change with sample emission
- Design of reference instruments for calibrating fluorescent standards

Sphere (d:0, de:8, di:8)

- CIE recommended geometries for general colorimetry
- Gives spectral reflectance factor
- Source SPD is altered by sample emission Spectral sphere error
- Design of commercial instruments commonly used for measuring fluorescent samples: paper, textiles

Traceability Issue: transfer of scale Need for Geometric Correction

NRC.CNR

Geometric Correction

General reflecting material

- Sample dependent
- Wavelength independent

$R(de:0) = \alpha R(45:0)$

 α = geometric correction factor

Magnitude of Correction:

- White reflectance standards: α = 0.985
- BCRA grey tiles: α = 0.965
- Non-fluorescent white paper: α = 0.985

Fluorescent reflecting material

Q. Do **reflected** and **fluorescent** components have the same correction?

NRC Goniospectrofluorimeter (GSF)

Gonio – variable angles of incidence and detection

Donated to NRC in 2009 by 3M Co. Complements the NRC Reference Spectrofluorimeter

Gonio- spectral fluorescence:

Spectral range: 300- 850 nm Spectral bandpass: 5 nm Incidence: 0° to 90° Viewing: 22° to 180° Sample beam: 25 mm diam.

Several Measurement Geometries

Bidirectional reflectance/ fluorescence (45a:0)

Hemispherical reflectance/ fluorescence (sphere)

Extension to Other Geometries: Gonio- and Sphere

Motivation:

Research Optical Properties of Materials

Gonio-characteristics of fluorescent white standards

New Calibration Services

Gonio-apparent fluorescent materials(security, decorative materials)

Improved Traceability

- Study geometric dependence: primary c.f. transfer calibrations
 - Reference measurements: bidirectional geometry (45:0) c.f.
 - Commercial instruments & Standard Test Methods (ISO, ASTM, AATCC) : sphere geometry (d:0, de:8, di:8).

NRC.CNR

Validation of GSF– Reflected component (45:0 geometry)

Non-fluorescent tiles

Fluorescent paper pad

c.f. PE-19, 0:45a geometry

c.f. NRC Reference spectrofluorimeter, 45a:0 geometry

Sphere Errors – Sample recess

Validation of GSF – Reflected component (8:di geometry)

NRC.CNR

Bispectral Fluorescence Results Sphere vs 45:0 geometry - Preliminary

Fluorescent White Paper Pad

Sphere

45a:0

Bispectral Fluorescence Results 45:0 vs Sphere geometry - Preliminary

Fluorescent Blue-Green Spectralon

45a:0

Sphere

Conclusions

- Traceability issues in fluorescence colorimetry
 - CIE reference (45:0) vs. practical (sphere) geometries
- Status of NRC Goniospectrofluorimeter validation
 - 45:0 measurements
 - sphere measurements
- Study of geometric dependence of fluorescence
 - Preliminary results
- Next steps to improve traceability:
 - Further characterize / correct sphere measurements
 - Single-beam substitution error
 - Spectral sphere error
 - Complete validation/ uncertainty budget

Thank you

Joanne.zwinkels@nrc-cnrc.gc.ca

NRC Fluorescence Measurements

Table 2. Uncertainty Budget for the Total Radiance Factors of Fluorescent Reflecting Materials Measured on NBC Reference Spectrofluorimeter in the Visible Range				
Uncertainty Component	Туре	Relative Standard Uncertainty	Uncertainty Contribution	Typical (λ = 450 nm; D65 illuminant)
Wavelength Scale ¹	В	$u(\lambda) = 0.1 \text{ nm}$	$u(\lambda)(\partialeta_T/\partial\lambda)$	0.0008
Bandpass ²	В	0.03% at peak	f($\partial^2 eta_T / \partial^2 \lambda$)	Negligible
Linearity and Photometric Accuracy ³	В	<0.2%	Abs(0.002 $oldsymbol{eta}_T$ (1- $oldsymbol{eta}_T$))	0.00054
Polarization ⁴	В			Negligible
Stray Light ⁵	В	<0.0006	0.0006/ $eta_{\scriptscriptstyle T}$	0.0005
Temperature $(\Delta T = 1.0 \text{ °C})^6$	В	0.018 nm/°C	$0.02 u(\lambda) (\partial eta_T / \partial \lambda)$	0.00002
Long Term System Stability ⁷	В	<0.2% per year	$(eta_{_{T,MAX}} lpha eta_{_{T,MIN}})$ / $\sqrt{12}$	0.00005
45°:0° Reflectance Scale ⁸	В	$u(\beta_R) = 0.00265$	0.0023 $\beta_{\scriptscriptstyle R}$	0.0020
45°:0° Luminescent Scale9	в	$u(\beta_L) = 0.005$	0.005 $eta_{\scriptscriptstyle L}$	0.00167
Luminescent Measurement Reproducibility ¹⁰	A	$u_{S}(\boldsymbol{\beta}_{L})$	$(eta_{{\scriptscriptstyle L},{\scriptscriptstyle MAX}}{f ar{f ce}}eta_{{\scriptscriptstyle L},{\scriptscriptstyle MIN}})/\sqrt{12}$	0.00085
Reflectance Measurement Reproducibility ¹¹	A	$u_{S}(\boldsymbol{\beta}_{R})$	$(eta_{ extsf{R}, extsf{MIN}}oldsymbol{arphi}$)/ $\sqrt{12}$	0.0017
			Combined standard uncertainty	0.0034
			Coverage Factor, k	2
			Expanded Uncertainty, (<i>k</i> = 2)	0.0068

Substitution vs Comparison

Substitution (single-beam sphere) - simpler design and improved sensitivity; subject to photometric scale error dependent on difference in reflectivities of sample and standard

NRC.CNRC

Comparison (double-beam sphere) - comparison standard remains fixed in position; dynamic compensation prevents changes in sphere efficiency for measurements of sample and reflectance standard at specimen port

Single-beam Substitution Error

- Change in the sphere efficiency (spectral transmittance) when sample or standard are present
- both the reflected and emitted power from the sample change the average sphere wall reflectance.
- In a double-beam instrument, this error is corrected for measurement of non-fluorescent samples by use of use of "dummy port" – ratio sample or standard signal to fixed (non-fluorescent) comparison sample at dummy port.
- For NRC sphere-based fluorescence measurements, to correct for this error:
 - Need to measure and correct for change in sphere efficiency due to reflected and emitted components, separately.

NCCORC

Geometric Correction

Fluorescent reflecting material

Do reflected and fluorescent components have the same correction?

ISO TC6 (Paper, pulps and board)

Initially: correction was applied to the **total radiance factor data**, i.e. assumed reflected and fluorescent components – SAME

Current practice: correction is applied to reflected component only Other issues that need to be resolved:

Who should carry out this geometric correction?

- the standardizing lab or the secondary lab?
- **ISO TC6:** the secondary labs (ALs) make necessary correction

NRC.CNRC

