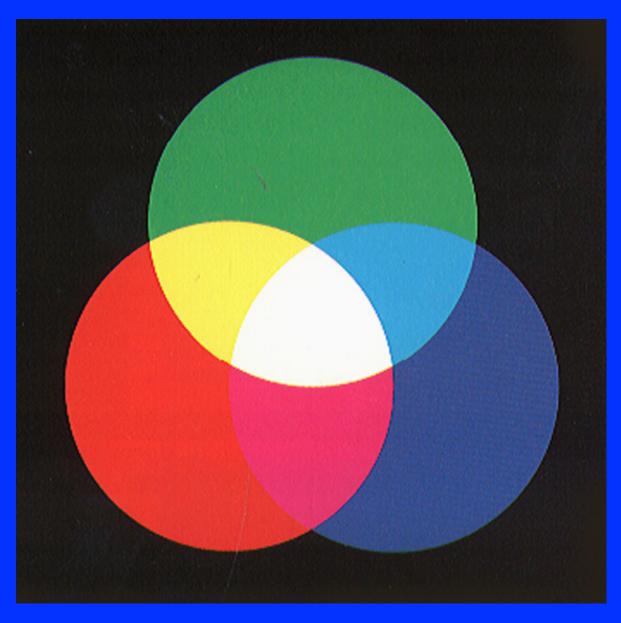

Effects of Specific Mavelengths of Ambient Light on Human Blood Chemistry in Alzheimer's and ADHD Subjects

ELECTROMAGNETIC SPECTRUM

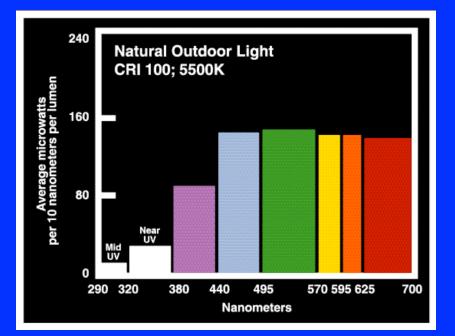
4.0.0	UV-C	UV-B	- · · · ·	VISIBLE STIMULI			NEAR IR			
100		280-315 400 (10° OBSERVER: 38				60)	(IR-A: 700 - 1,400) ABOVE VALUES ARE IN NANOMETERS			
	200	300	400	5 <mark>0</mark> 0	6 <mark>0</mark> 0	700	800	900	1000	1100
				WAVEL	ENGTH II	N NANON	/IETERS			

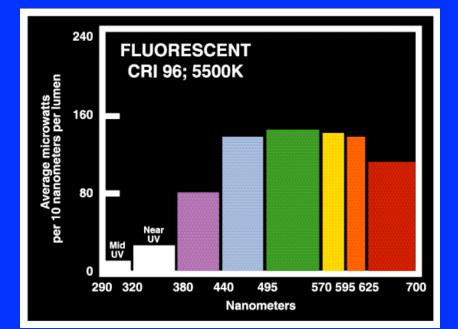

- Light = visible part of the electromagnetic spectrum (380-750). Light is invisible 'till it hits something.
- Measured in wavelengths
- Nanometers (nm) 1 billionth of a meter
- Human range = 780 nm 380nm

Visible Electromagnetic Spectrum

- Blue = 440 nm
- Green = 500nm

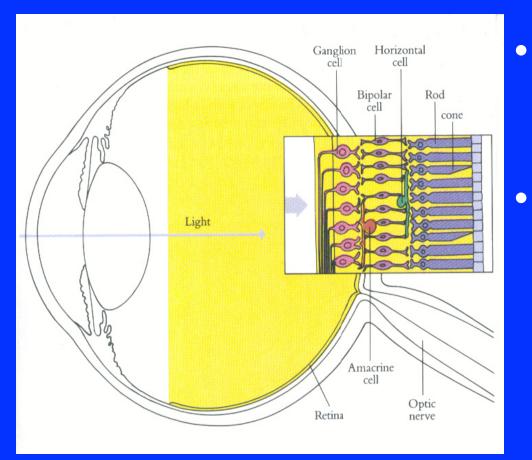
- Yellow = 580 nm
- Red = 680 nm

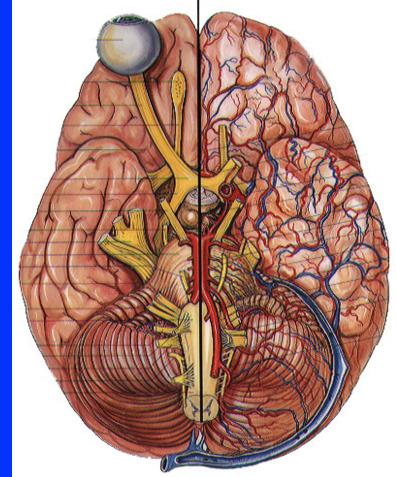



 Combo of all visible nm's in = distrib. = white light

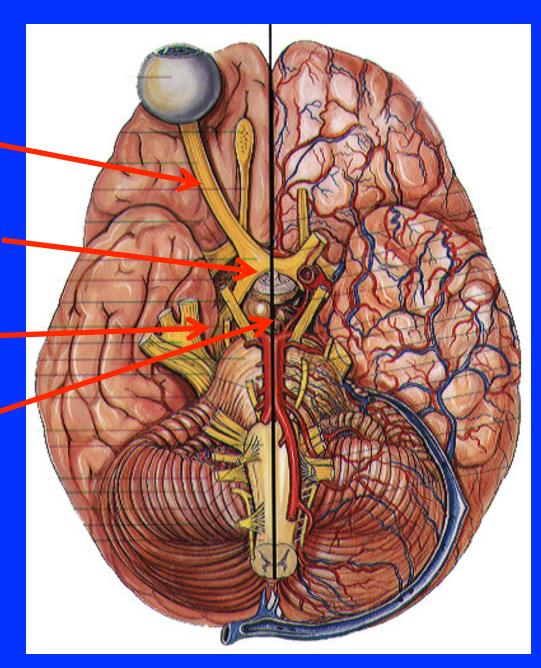
• 5500 K

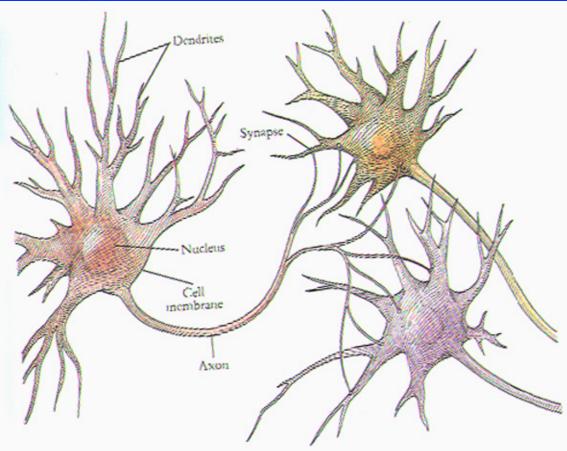
• 100 CRI (90+)


SPECTRAL DISTRIBUTION CHART



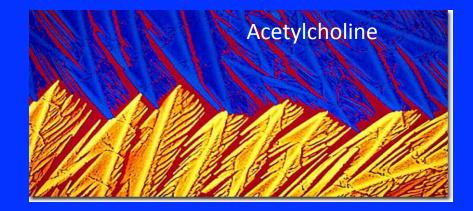
Natural daylight


Fluorescent light

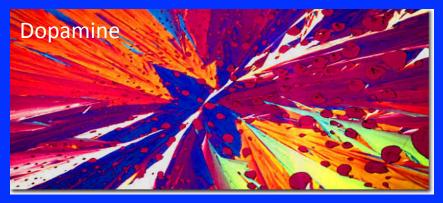


- Optic Nerve carries stimulus to inner brain
- Eyes are part of the brain

- Optic nerve
- Optic chiasma
- Hypothalmus
- Pineal



Neurons

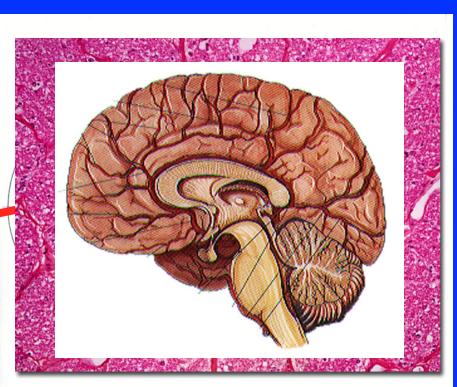


 Particular light triggers production of neurotransmitters/enzymes hormones in brain that influence behaviors Physiological Process

- Influences production of neurotransmitters in brain that:
- Affect mood disorders in adults, adolescents, & children
- Affect agitated behaviors of dementia & ADHD

 Serotonin – all of us – memory, learning, mood enhancer – regulates anger
& aggression, anxiety disorders, depression, obsessive-compulsive, Alzheimer's – excessive levels=toxic

 Dopamine - ADHD, hyperactive adults, bi-polar, social anxiety, regulates pain (fibromyalgia, PKD) – too much = psychosis & schizophrenia


- Norepinephrine ADHD increases alertness, arousal, reward system
- Acetycholine Alzheimer's memory & learning +

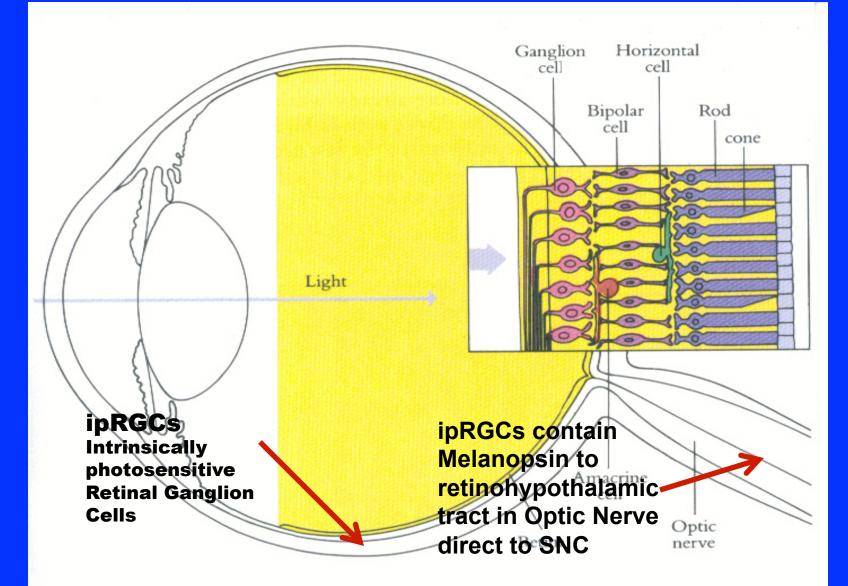
Seminal Discoveries - 1

 Photopigment receptor in eye directly responsible for reacting to light & influencing biological effects of light – has nothing to do with vision

(Brainard-Neurology, Tom Jefferson Univ, Phil.PA)

Ganglion Cells J Biol Rhythms 2005; 20:314

Optic Radiations


Hypothalmus

Pineal Gland ---

SCN Suprachiasmatic Nucleus ipRG

ipRGCs to Optic Nerve To SCN direct to Pineal = Sparks neurotransmitter, hormone & enzyme production that control moods, behaviors, +

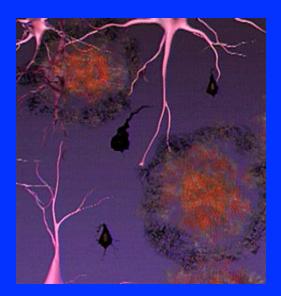
RETINA CELLS

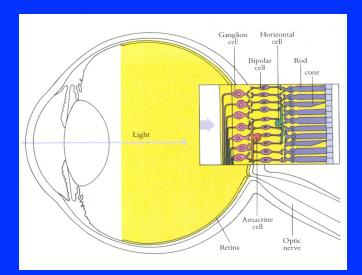
ipRGCs

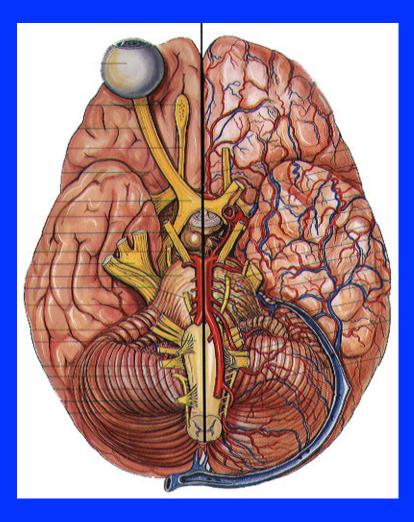
- Light sensitive
- Not used for vision
- Direct link to serotonin, melatonin, + other hormones
- Primarily sensitive to blue light
- location suggests blue light in sky above normal field of view
- Regulate through seasonal variations
- Location of the pre-historic Pineal Gland

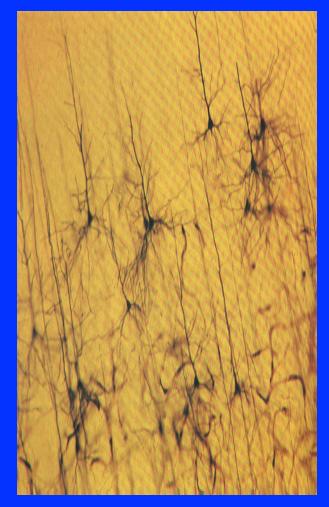
Spectral Transmission of Eyelid Lighting Research Center - Rensselaer

- Eyelid thickness varies thinner at mid to top
- Where more blue light enters & falls on lower **back portion** of retina - The ipRGCs directly to SCN


LRC Sleep Light Treatment Glasses (Mariana Figueiro, et al) research & prototype '09, production '11


- Blue light positioned high direct to ipRGC's ~~ SCN
- Elderly, Alzheimer's w/agerelated retinal loss – provides stronger signal
- shift workers, spaces w/ limited daylight
- blue light peak at 470nm
- 2 It. levels 50lux & 10 lux
- 50 lux more quickly, higher level & lasted longer


Seminal Discoveries – 2


 Eye Laser scans as early detector of Alzheimer's disease - 100% accurate - since '05 experimental test w/humans -


Attempts to find beta amyloid outside the brain have been unsuccessful.

Amyloid plaques – protein deficiency

Proteins generate light & stimulated by light

Alzheimer's Neurons & Plaques

Fluorescent Ligand Scanning

Melanocortin Receptor (MC4R) in eye & directly to hypothalmus can *reverse* memory impairment caused by fibrous amyloyd protein plague build up.

Amyloid protein stimulated by light - particularly blue light.

Blue light triggers the MC4R receptor in eye & hypothalmus & keeps protein energized to *not* form amyloid plaques.

Newest research indicates memory impairment can be reversed. MC4R is now being synthesized for testing hopeful pharmacological use

Discovered beta amyloid in lens of AD patients

Unusual cataract – no vision intererence; not age-related type; at edges of lens

Scan - appear white i patients Laser scan is non-invasive, brief, simple, entirely safe Will eventually be done in ophthalmologists office

video

To Confirm – biochemical testing

- Eye drops bind to amyloid molecules and
- Light up ! (fluoresce)
- Amyloid acculmulates in lens long before build up in brain
- Now, developing techniques to detect process even before cataracts can be detected
- Should detect decades before symptoms occur

 Goldstein – "Hope to have it available to doctors within the next 2 years." Neuroptix Corp. – Sapphire platform

 Lee E. Goldstein – Harvard Medical School & Brigham & Womens' Hospital – Boston

• The Lancet, April 12, 2003

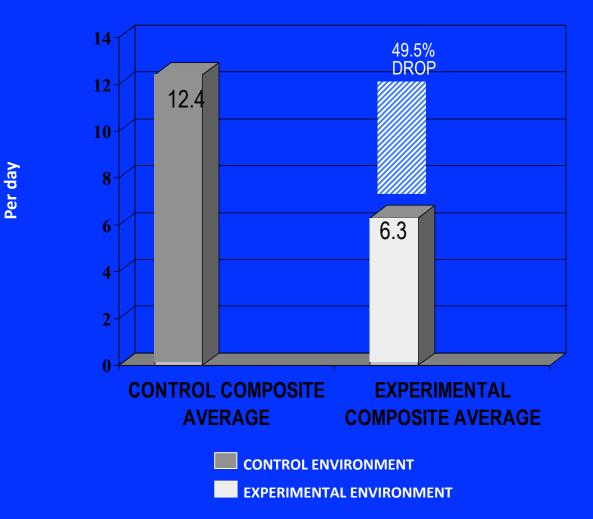
 On-going research w/humans – Optical Society of America, October 2005

Seminal Discoveries – 3

- Direct monitoring of blood chemistry changes during different daylight exposures
- Jugular vein samples 101 healthy men – assess relation of serotonin to various daylight exposures
- Production of serotonin by brain directly related to duration & intensity of daylight
- Production rose rapidly w/increased light intensity

Seminal Discoveries – 3

 Findings support theory that changes in daylight exposure underlie (at least in part) serotonin release by brain that, in turn, underlie human behavior modifications


- Human Neurotransmitter Laboratory, Baker Heart Research Institute, Melbourne, Australia
- The Lancet 2002; 360:1840-1842

Environmental Light

- Frequency (nm)
- Duration
- Intensity

 Directly changes brain's blood chemistry that directly affects human behavior, health, performance Manipulating daylight and white electric light

% OF CHANGE IN DISRUPTIVE BEHAVIORS

DISRUPTIVE BEHAVIORS

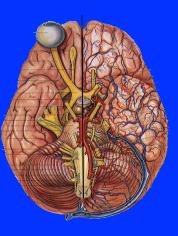
Average number of

Light Therapy

Manipulating specific nm's with no daylight for therapeutic purposes

- Blue 440 nm
- Green 500 nm
- Yellow 580 nm
- **Red** 680 nm
- White 91 CRI 5550 K

- Normal healthy middle aged subjects
- Normal healthy elderly subjects
- Alzheimer's subjects
- ADHD adolescent subjects
- Non-ADHD adolescent subjects


How do observed behaviors compare to changes in blood chemistry?

Light Induced Changes in <u>ADHD</u> Behaviors & Blood Chemistry

Positive

White normal adolescent behavior

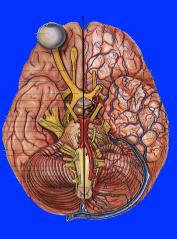
Yellow limited animation in control

Negative

Red intensely hyperactive & defiant

Green very pronounced hyperactivity & defiance w/no

self-control


Blue most passive

Blood chemistry analysis (statistical analysis of radio-immunological assays) corroborates behavior observations

Light Induced Changes in Alzheimer's Behaviors & Blood Chemistry

Positive

White most positive

<u>Negative</u>

Red intensely disruptive & confused

Blue most passive

Yellow high % of negative behaviors

Green moderately positive

Blood chemistry analysis corroborates behavior observations

Normal Healthy

 Red – agitated, stressed, warm, poor visual acuity

- Green passive, at rest, calm
- Blue calm, passive, at rest
- Yellow energetic, happy, at work
- White highly energetic, at work, calm

Schizophrenia & Insomnia

BLUE LIGHT HAZARD

World Health Org declared blue light a carcinogenic - 2007 –

(breast and prostate cancer studies)

- Conclusive research findings still out
- At risk those w/macular degeneration & retinal eye problems
- Industry setes standards for bright light and UV radiation but none for blue light hazard

Common Threads

- White daylight not yellowed, best, highest energy level
- White electric light approx. 5500k, 90+ CRI, good substitute for daylight
- Blue no harm, restful to all, selective use
- Yellow selective use, good for hyper people, NO for dementias, bipolar disorders
- Green NO for hyperactive people, good for normal healthy

Daylight - behavior & performance studies

 Office worker performance – daylight w/view – 6%-12% faster – 10%-25% better mental function and memory

 Schools – those w/most daylt. – 20% faster on math, 26% faster on reading – 21% higher student learning rates overall than those w/least daylight

Recommended Daylight Factors

DF

• Ordinary seeing tasks (reading, easy office work) 1.5-2.5%

- Moderately difficult tasks 2.5-4.0% (normal machine work, prolonged reading)
- Difficult, prolonged tasks 4.0-8.0% (drafting, proofreading, fine machine work)

 Retail Stores – max. effect = 40% increase in sales, energy savings = \$. 24/sf & \$.66/sf w/optimized daylight

profit from increased sales = 19 x's energy savings & 45-100 x's energy savings w/optimized daylight system

Source for offices, schools, retail: Heschong Mahone Group Dr. Brainard – "hope the science may lead to a new generation of lights & screens designed with wavelengths that adjust according to the time of day."

NASA now hired Dr. Brainard to do just that

"we're on the verge of a lighting revolution, if the light system can be made to work during spaceflight, "people will use it here on the ground."

Very Brief Pubs List

- Journal of Architecture, Planning & Research
- Intl Congress of Neuropsychiatry, Endocrinology, & Immunology – Bregenz, Austria
- Intl Congress for Global Health Progress -World Health Org & UNESCO – Paris, France
- Experimental Gerontology
- Journal of Interior Design
- Intl Congress of People-Environment Studies Vienna, Austria
- World Congress for Environmental Design for the New Millennium – Seoul, Korea
- Inform Design

Melinda La Garce School of Architecture Southern Illinois University

mlagarce@siu.edu

