Adaptive LED Wall Packs

Adaptive LED Wall Packs

Wall packs offer an effective means of illuminating building perimeters, bolstering security and aiding wayfinding, but many are limited in terms of their efficiency, with minimal or nonexistent cutoff. Moreover, because wall packs typically operate in areas with low occupancy rates, they often waste energy fully illuminating vacant spaces for hours at a time every night.

Adaptive LED Wall Packs, UC Davis

Adaptive LED wall packs alongside the exterior of a warehouse storage facility at the University of California, Davis (UCD).

In 2012, UC Davis upgraded its exterior lighting as part of the university’s Smart Lighting Initiative. Wall packs on campus, like other exterior lighting fixtures, were retrofitted with dimmable LED sources, motion sensors, and wireless controls. This allowed the units to be incorporated into an adaptive campuswide lighting control system. The system offers an intelligent, networked approach to lighting and energy management, with improved lighting quality and optimal energy efficiency.

Dual-Loop Photosensor Control System for Daylight Harvesting

Dual-Loop Photosensor Control System for Daylight Harvesting

Photosensor control systems have been available for more than two decades, but they have struggled to gain widespread use due to issues with reliability. To address these issues, CLTC partnered with WattStopper, Walmart, Sacramento Municipal Utility District, Southern California Edison, and San Diego Gas & Electric Company to develop a more reliable, more effective daylighting control system capable of sensing changes in daylight levels with increased accuracy and responding with more appropriate adjustments in electric light levels.

Bi-level Switching in Office Spaces Project Report


The primary objective of this study is to quantify the energy use in private offices that are equipped with bi-level switching and occupant controls. The baseline comparison is made to a theoretical case where the occupant has no control over their lighting and it is switched on and off solely by an occupancy sensor. In addition, this study looks closely at the possibilities for combining automatic and manual control to achieve the greatest energy savings and user satisfaction.

Exterior Lighting Guide for Federal Agencies


This document provides overviews of exterior lighting technologies that would best be integrated into national parks as retrofits or new designs, as well as tips for evaluating light sources, performing a lighting audit, and pairing lamps with lighting controls. The key issues to consider when performing a retrofit or new lighting design are energy, cost, and maintenance savings, and this guide is intended to help make these decisions easier.

NEAA Study: Technology & Market Assessment of Networked Outdoor Lighting Controls


This study focuses on controls systems designed for street and parking lot lighting applications. These systems provide tools to manage and monitor city-wide streetlight assets remotely, including the potential to meter actual street lighting energy use. Networked controls that offer dimming capability can also provide energy savings through adaptive street lighting management, the practice of reducing lighting power and output as conditions change over time.

SCE Smart Corridors: Bi-level Lighting for Office Applications


The objective of the Smart Corridor project is to quantify the potential energy savings in corridor lighting by implementing bi-level lighting technologies in commercial spaces such as office, hospitality, and educational buildings while also evaluating the market potential for the bi-level lighting strategy. The energy savings data gathered from this project is crucial to the large-scale implementation of bi-level strategies, as it will support the inclusion of bi-level lighting practices for secondary spaces in utility incentive programs and, eventually, building code language.

CLTC: Smart Corridor Lighting


This demonstration project consists of a one-to-one retrofit of existing fluorescent luminaires with either new fixtures or new components for three corridor areas in Bainer Hall. This project is intended to demonstrate the energy savings that can be achieved by using occupancy-based controls for interior corridor applications. 


Subscribe to RSS - Controls