Dual-Loop Photosensor Control System for Daylight Harvesting

Dual-Loop Photosensor Control System for Daylight Harvesting

Photosensor control systems have been available for more than two decades, but they have struggled to gain widespread use due to issues with reliability. To address these issues, CLTC partnered with WattStopper, Walmart, Sacramento Municipal Utility District, Southern California Edison, and San Diego Gas & Electric Company to develop a more reliable, more effective daylighting control system capable of sensing changes in daylight levels with increased accuracy and responding with more appropriate adjustments in electric light levels.

Bi-level Switching in Office Spaces Project Report


The primary objective of this study is to quantify the energy use in private offices that are equipped with bi-level switching and occupant controls. The baseline comparison is made to a theoretical case where the occupant has no control over their lighting and it is switched on and off solely by an occupancy sensor. In addition, this study looks closely at the possibilities for combining automatic and manual control to achieve the greatest energy savings and user satisfaction.

Advanced LED Downlighting System


This technical brief deals with the issue of existing LED downlight products that fail to live up to expectations, providing poor light distribution, glare, and low system efficiencies. The solution is newly designed downlights that use LEDs to their full potential while maintaining the features and functionality that have made them popular.

SCE Smart Corridors: Bi-level Lighting for Office Applications


The objective of the Smart Corridor project is to quantify the potential energy savings in corridor lighting by implementing bi-level lighting technologies in commercial spaces such as office, hospitality, and educational buildings while also evaluating the market potential for the bi-level lighting strategy. The energy savings data gathered from this project is crucial to the large-scale implementation of bi-level strategies, as it will support the inclusion of bi-level lighting practices for secondary spaces in utility incentive programs and, eventually, building code language.

CLTC: Smart Corridor Lighting


This demonstration project consists of a one-to-one retrofit of existing fluorescent luminaires with either new fixtures or new components for three corridor areas in Bainer Hall. This project is intended to demonstrate the energy savings that can be achieved by using occupancy-based controls for interior corridor applications. 


Subscribe to RSS - Indoor