Projects

Adaptive Envelope Systems for Retail & Agriculture

Adaptive Envelope Systems for Retail & Agriculture

CLTC collaborated with the California Energy Commission and the California Institute for Energy and Environment (CIEE) to develop adaptive envelope technologies for retail and agricultural buildings. The objective was to develop systems that optimize both lighting and thermal efficiency in these facilities, using advanced fenestration materials, daylighting technologies and lighting controls.

Western Exterior Occupancy Survey (WEOS)

Western Exterior Occupancy Survey (WEOS)

CLTC partnered with Bonneville Power Administration, Pacific Gas and Electric Company and Southern California Edison to survey occupancy at four test sites in California and four test sites in Washington State. The sites selected for the research study represent market sectors identified as having the greatest potential to achieve energy savings with exterior adaptive lighting solutions.

Networked LED Streetlights with Intelligent Controls

Networked LED Streetlights with Intelligent Controls

CLTC has collaborated with the City of Davis to field-test a network-controlled LED street lighting system along Second Street in Davis, CA. The project team will demonstrate and measure the effects of various sensor technologies and communication protocols for adaptive street lighting, in terms of performance characteristics and energy savings. The demonstration involved replacing 12 high-pressure sodium (HPS) fixtures with LED streetlights and retrofitting 14 existing LED fixtures with dimming capabilities and controls.

Ultra-Smart Exterior Luminaires

Ultra-Smart Exterior Luminaires

“Smart” luminaires use integrated sensors to adapt light levels based on available daylight and/or occupancy patterns; “ultra-smart” luminaires function similarly, but they are also capable of communicating with one another through wireless radio frequency (RF) connections. This RF networking allows the luminaires to operate as a larger system. Different luminaire types can be incorporated into the network, including wall packs, post-tops, parking lot luminaires, and streetlights.

CLASP Project: LED Replacement Lamp Testing

CLASP Project: LED Replacement Lamp Testing

The Collaborative Labeling and Appliance Standards Program (CLASP), an international nonprofit, partnered with CLTC to conduct laboratory testing of LED lamps currently available in the U.S. market. Data collected and analyzed in the course of testing helped the California Energy Commission develop a voluntary quality-based performance specification for screw-base LED lamps, with requirements for color characteristics and dimmability. CLASP and CLTC are also assisting the Energy Commission in developing a test methodology for measuring these quality characteristics.

AB1109 Baseline

AB1109 Baseline

The California legislature mandated a reduction in lighting energy use in the commercial and residential building sectors per Assembly Bill 1109, the California Lighting Efficiency and Toxics Reduction Act (AB 1109, Huffman, Chapter 534, Statutes of 2007). Per AB 1109, California must reduce its lighting energy use between 2007 and 2018 by 50% for residential interior lighting and by 25% for commercial interior and outdoor lighting.

Adaptive Corridors

Adaptive Corridors, Bainer Hall, UC Davis

CLTC research, demonstrations and case studies have shown adaptive corridor and stairwell lighting systems are a cost-effective strategy for achieving lighting energy savings of 40–50%. This is because many stairwells and corridors are illuminated continuously, despite low occupancy rates, and are usually equipped with standard, non-dimmable ballasts and operated with wall switches or from a panel box.

Core Sunlighting Systems

Solar Canopy for Core Daylighting

Core sunlighting systems deliver sunlight deep into multi-story building cores, where daylight is not available through skylights or windows. An effective core sunlighting system offers physiological and psychological benefits to occupants while dramatically improving the quality and color rendering of lighting, reducing lighting electricity use up to 75%, and reducing electricity loads during peak demand periods.

Pages

Recent News

CLTC recently completed a four-year EPIC-sponsored research program that included a long-term performance evaluation
CLTC is excited to announce that our 2019 Nonresidential Lighting and Electrical Power Distribution Guide is now avai
CLTC is excited to announce that our 2019 Residential Lighting Guide is now available!  The guide assists builders an