Projects

AB1109 Baseline

AB1109 Baseline

The California legislature mandated a reduction in lighting energy use in the commercial and residential building sectors per Assembly Bill 1109, the California Lighting Efficiency and Toxics Reduction Act (AB 1109, Huffman, Chapter 534, Statutes of 2007). Per AB 1109, California must reduce its lighting energy use between 2007 and 2018 by 50% for residential interior lighting and by 25% for commercial interior and outdoor lighting.

Adaptive Corridors

Adaptive Corridors, Bainer Hall, UC Davis

CLTC research, demonstrations and case studies have shown adaptive corridor and stairwell lighting systems are a cost-effective strategy for achieving lighting energy savings of 40–50%. This is because many stairwells and corridors are illuminated continuously, despite low occupancy rates, and are usually equipped with standard, non-dimmable ballasts and operated with wall switches or from a panel box.

Core Sunlighting Systems

Solar Canopy for Core Daylighting

Core sunlighting systems deliver sunlight deep into multi-story building cores, where daylight is not available through skylights or windows. An effective core sunlighting system offers physiological and psychological benefits to occupants while dramatically improving the quality and color rendering of lighting, reducing lighting electricity use up to 75%, and reducing electricity loads during peak demand periods.

Daylight Optimization for Skylights

Daylight Optimization for Skylights

CLTC is evaluating dynamic skylight systems that automatically adjust light transmission to minimize glare and manage solar heat gain, significantly improving both lighting quality and energy savings. Engineers are using one of the Center's integrating spheres to measure the transmittance of different sample units.

Applications include residential and commercial spaces that receive sufficient sunlight to require some form of shading for occupant comfort or to prevent solar heat gain.

Adaptive LED Wall Packs

Adaptive LED Wall Packs

Wall packs offer an effective means of illuminating building perimeters, bolstering security and aiding wayfinding, but many are limited in terms of their efficiency, with minimal or nonexistent cutoff. Moreover, because wall packs typically operate in areas with low occupancy rates, they often waste energy fully illuminating vacant spaces for hours at a time every night.

Dual-Loop Photosensor Control System for Daylight Harvesting

Dual-Loop Photosensor Control System for Daylight Harvesting

Photosensor control systems have been available for more than two decades, but they have struggled to gain widespread use due to issues with reliability. To address these issues, CLTC partnered with WattStopper, Walmart, Sacramento Municipal Utility District, Southern California Edison, and San Diego Gas & Electric Company to develop a more reliable, more effective daylighting control system capable of sensing changes in daylight levels with increased accuracy and responding with more appropriate adjustments in electric light levels.

Evaluation of Xenon Lighting

Due to the potential use of xenon lamps in outdoor applications, CLTC in collaboration with PG&E, developed an evaluation and testing program for xenon technology used in general illumination, outdoor applications. The research included under this project informed utilities about the performance and reliability of xenon lamps in these applications as compared to Light Emitting Diodes (LED), induction or other appropriate parking and area lighting solutions.

Pages

Recent News

In the fall of 2017, the Mexican Ministry of Energy awarded funding to the Universidad Autónoma de Guadalajara in col
Outcome-based energy codes are relatively new.
CLTC is excited to share that the California Energy Commission recently awarded approximately $4.2M in funding for CL